いつもの川。午前中だけ。
やろうとおもっていたところは工事中だったので、もうすこし上流。
いないかな〜と思っていたけど...
イワナ、出てきてくれた😁(このちょっと前にもイワナばらしていた😭)
もっと、写真のとり方うまくなりたい😇(このあと逃げていった...)
これはスプーンだったけど、トリコロール舞45もよかったな〜
あと、一回ぐらいかな?
もうすぐ秋かな
いつもの川。午前中だけ。
やろうとおもっていたところは工事中だったので、もうすこし上流。
いないかな〜と思っていたけど...
イワナ、出てきてくれた😁(このちょっと前にもイワナばらしていた😭)
もっと、写真のとり方うまくなりたい😇(このあと逃げていった...)
これはスプーンだったけど、トリコロール舞45もよかったな〜
あと、一回ぐらいかな?
もうすぐ秋かな
$ curl -s -L https://nvidia.github.io/nvidia-docker/rhel8.3/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-docker.repo $ sudo dnf update $ sudo dnf install nvidia-container-toolkit
$ sudo su # podman pull nvidia/cuda:11.3.0-base-ubuntu18.04 # podman run -it --rm nvidia/cuda:11.3.0-base-ubuntu18.04 nvidia-smi Thu Apr 29 23:19:57 2021 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 465.24.02 Driver Version: 465.24.02 CUDA Version: 11.3 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 NVIDIA GeForce ... Off | 00000000:0A:00.0 On | N/A | | 0% 42C P8 9W / 151W | 212MiB / 8116MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| +-----------------------------------------------------------------------------+
$ wget http://ftp.tsukuba.wide.ad.jp/software/gcc/releases/gcc-10.2.0/gcc-10.2.0.tar.gz $ tar xf gcc-10.2.0.tar.gz $ cd gcc-10.2.0/ $ ./contrib/download_prerequisites $ mkdir build $ cd build/ $ ../configure \ --enable-bootstrap \ --enable-languages=c,c++ \ --prefix=/home/xxxxx/gcc/10.2 \ --enable-shared \ --enable-threads=posix \ --enable-checking=release \ --disable-multilib \ --with-system-zlib \ --enable-__cxa_atexit \ --disable-libunwind-exceptions \ --enable-gnu-unique-object \ --enable-linker-build-id \ --with-gcc-major-version-only \ --with-linker-hash-style=gnu \ --enable-plugin \ --enable-initfini-array \ --with-isl \ --enable-libmpx \ --enable-gnu-indirect-function \ --build=x86_64-redhat-linux $ make -j16 $ make install
$ /home/xxxxx/gcc/10.2/bin/gcc -dumpspecs > specs $ vi specs # before *link_libgcc: %D # after *link_libgcc: %{!static:%{!static-libgcc:-rpath /home/xxxx/gcc/10.2/lib64/}} %D $ mv specs /home/xxxx/gcc/10.2/lib/gcc/x86_64-redhat-linux/10/
$ sudo dnf install environment-modules $ sudo vi /etc/modulefiles/gcc10x #%Module 1.0 # # gcc-10.X module for use with 'environment-modules' package: # prepend-path PATH /home/xxxxx/gcc/10.2/bin/
$ mkvirtualenv -p python3 tf2.5-rc2 $ pip install pip numpy wheel $ pip install keras_preprocessing --no-deps
(tf2.5-rc1) $ git clone -b r2.5 https://github.com/tensorflow/tensorflow.git (tf2.5-rc2) $ cd tensorflow (tf2.5-rc2) $ ./configure (tf2.5-rc2) $ bazel build \ --config=cuda \ --config=v2 \ --config=nonccl \ --config=opt \ //tensorflow/tools/pip_package:build_pip_package (tf2.5-rc2) $ ./bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg (tf2.5-rc2) $ pip install /tmp/tensorflow_pkg/tensorflow-2.5.0rc2-cp39-cp39-linux_x86_64.whl
(tf2.5-rc2) $ python Python 3.9.4 (default, Apr 6 2021, 00:00:00) [GCC 11.0.1 20210324 (Red Hat 11.0.1-0)] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import tensorflow as tf 2021-05-01 21:07:37.359112: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 INFO:tensorflow:Enabling eager execution INFO:tensorflow:Enabling v2 tensorshape INFO:tensorflow:Enabling resource variables INFO:tensorflow:Enabling tensor equality INFO:tensorflow:Enabling control flow v2 >>> tf.__version__ '2.5.0-rc2' >>> from tensorflow.python.client import device_lib >>> device_lib.list_local_devices() 2021-05-01 21:08:05.854665: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE3 SSE4.1 SSE4.2 AVX AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2021-05-01 21:08:05.865237: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1 2021-05-01 21:08:05.908808: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2021-05-01 21:08:05.909879: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: pciBusID: 0000:0a:00.0 name: NVIDIA GeForce GTX 1070 computeCapability: 6.1 coreClock: 1.7085GHz coreCount: 15 deviceMemorySize: 7.93GiB deviceMemoryBandwidth: 238.66GiB/s 2021-05-01 21:08:05.909938: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2021-05-01 21:08:05.942599: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11 2021-05-01 21:08:05.942733: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11 2021-05-01 21:08:05.953447: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10 2021-05-01 21:08:05.970201: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10 2021-05-01 21:08:05.982505: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11 2021-05-01 21:08:05.994212: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11 2021-05-01 21:08:05.995767: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8 2021-05-01 21:08:05.995901: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2021-05-01 21:08:05.996970: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2021-05-01 21:08:05.997553: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0 2021-05-01 21:08:05.997592: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0 2021-05-01 21:08:06.441157: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix: 2021-05-01 21:08:06.441208: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264] 0 2021-05-01 21:08:06.441217: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0: N 2021-05-01 21:08:06.441408: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2021-05-01 21:08:06.441949: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2021-05-01 21:08:06.442510: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2021-05-01 21:08:06.442984: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/device:GPU:0 with 6992 MB memory) -> physical GPU (device: 0, name: NVIDIA GeForce GTX 1070, pci bus id: 0000:0a:00.0, compute capability: 6.1) [name: "/device:CPU:0" device_type: "CPU" memory_limit: 268435456 locality { } incarnation: 17887149015766682436 , name: "/device:GPU:0" device_type: "GPU" memory_limit: 7332429824 locality { bus_id: 1 links { } } incarnation: 2150787946068778776 physical_device_desc: "device: 0, name: NVIDIA GeForce GTX 1070, pci bus id: 0000:0a:00.0, compute capability: 6.1" ] >>>
ランディングネットを手に入れた!
— nb.o (@Nextremer_nb_o) March 26, 2021
今年はいけるかなぁ〜🎣 pic.twitter.com/qY13Dhat7B
$ sudo pip3 install virtualenv virtualenvwrapper # Add to .bashrc # virtualenv and virtualenvwrapper export WORKON_HOME=$HOME/.virtualenvs export VIRTUALENVWRAPPER_VIRTUALENV=/usr/local/bin/virtualenv export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3 source /usr/local/bin/virtualenvwrapper.sh export VIRTUALENVWRAPPER_ENV_BIN_DIR=bin $ source .bashrc $ mkvirtualenv --python=python3 open3d $ workon open3d
(open3d) $ sudo apt-get update (open3d) $ sudo apt-get install libhdf5-serial-dev hdf5-tools libhdf5-dev zlib1g-dev zip libjpeg8-dev liblapack-dev libblas-dev gfortran (open3d) $ pip3 install numpy==1.16.1 future==0.18.2 mock==3.0.5 h5py==2.10.0 keras_preprocessing==1.1.1 keras_applications==1.0.8 gast==0.2.2 futures protobuf pybind11 (open3d) $ pip3 install --pre --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v45 tensorflow
(open3d) $ wget https://nvidia.box.com/shared/static/cs3xn3td6sfgtene6jdvsxlr366m2dhq.whl -O torch-1.7.0-cp36-cp36m-linux_aarch64.whl (open3d) $ sudo apt-get install python3-pip libopenblas-base libopenmpi-dev (open3d) $ pip3 install Cython (open3d) $ pip3 install numpy torch-1.7.0-cp36-cp36m-linux_aarch64.whl
(open3d) $ python -c "import torch; print(torch._C._GLIBCXX_USE_CXX11_ABI)" True (open3d) $ python -c "import tensorflow; print(tensorflow.__cxx11_abi_flag__)" 2021-02-22 18:53:09.238147: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.10.2 1
(open3d) $ sudo systemctl set-default multi-user.target (open3d) $ sudo reboot
$ workon open3d (open3d) $ git clone --recursive https://github.com/intel-isl/Open3D (open3d) $ git clone https://github.com/intel-isl/Open3D-ML.git (open3d) $ cd Open3D/ (open3d) $ mkdir build && cd build (open3d) $ cmake \ -DPYTHON_EXECUTABLE=$(which python3) \ -DBUILD_SHARED_LIBS=ON \ -DBUILD_BENCHMARKS=ON \ -DBUILD_CUDA_MODULE=ON \ -DBUILD_CACHED_CUDA_MANAGER=ON \ -DBUILD_GUI=ON \ -DGLIBCXX_USE_CXX11_ABI=ON \ -DBUILD_RPC_INTERFACE=ON \ -DBUILD_TENSORFLOW_OPS=ON \ -DBUILD_PYTORCH_OPS=ON \ -DBUNDLE_OPEN3D_ML=ON \ -DOPEN3D_ML_ROOT=../../Open3D-ML \ -DCMAKE_BUILD_TYPE=Release \ .. (open3d) $ make -j 3 (open3d) $ sudo make install (open3d) $ pip install yapf (open3d) $ sudo make pip-package (open3d) $ pip install /home/jetson/Open3D/build/lib/python_package/pip_package/open3d-0.12.0+408d9d0a-cp36-cp36m-linux_aarch64.whl
$ sudo systemctl set-default graphical.target $ sudo reboot
これ、ほんと?
— nb.o (@Nextremer_nb_o) February 15, 2021
ソース検索してもUSE_SYSTEM_LIBREALSENSE使われなさそうだけど…
これ、絶対librealsenseビルドするよね??https://t.co/nnWJQ0aWOK
$ git clone --recursive https://github.com/intel-isl/Open3D $ cd Open3D $ mkdir build && cd build $ cmake \ -DCMAKE_BUILD_TYPE=Release \ -DBUILD_SHARED_LIBS=ON \ -DBUILD_CUDA_MODULE=OFF \ -DBUILD_GUI=ON \ -DPYTHON_EXECUTABLE=$(which python3) \ -DBUILD_LIBREALSENSE=ON \ -DUSE_SYSTEM_LIBREALSENSE=ON \ -DGLIBCXX_USE_CXX11_ABI=ON .. $ make -j3 $ sudo make install $ sudo make install-pip-package
$ python Python 3.6.9 (default, Oct 8 2020, 12:12:24) [GCC 8.4.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import open3d as o3d >>> o3d.t.io.RealSenseSensor.list_devices() [Open3D INFO] [0] Intel RealSense L515: f0220613 [Open3D INFO] depth_resolution: [320,240] [Open3D INFO] depth_format: [RS2_FORMAT_Z16] [Open3D INFO] visual_preset: [RS2_L500_VISUAL_PRESET_CUSTOM | RS2_L500_VISUAL_PRESET_DEFAULT | RS2_L500_VISUAL_PRESET_LOW_AMBIENT | RS2_L500_VISUAL_PRESET_MAX_RANGE | RS2_L500_VISUAL_PRESET_NO_AMBIENT | RS2_L500_VISUAL_PRESET_SHORT_RANGE] [Open3D INFO] color_fps: [15 | 30 | 6] [Open3D INFO] depth_fps: [30] [Open3D INFO] color_resolution: [640,480] [Open3D INFO] color_format: [RS2_FORMAT_BGR8 | RS2_FORMAT_BGRA8 | RS2_FORMAT_RGB8 | RS2_FORMAT_RGBA8 | RS2_FORMAT_Y16 | RS2_FORMAT_YUYV] [Open3D INFO] Open3D only supports synchronized color and depth capture (color_fps = depth_fps). True >>>
💯💯💯💯💯💯💯💯💯💯💯💯💯💯💯💯💯 pic.twitter.com/tyO0pUgA2t
— nb.o (@Nextremer_nb_o) February 18, 2021
やった〜✌
— nb.o (@Nextremer_nb_o) February 20, 2021
Open3Dにだしたプルリクエスト、マージされた〜👍 https://t.co/fGrF8IEhxJ
$ sudo apt update $ sudo apt upgrade $ git clone -b jetson_l4t-r32.5-4.9 https://github.com/NobuoTsukamoto/librealsense.git $ cd librealsense $ ./scripts/patch-realsense-ubuntu-L4T.sh ~~~~~~~~~~ Create the sandbox - NVidia L4T source tree(s) Downloading default kernel/kernel-4.9 source... Cloning into '/home/jetson/librealsense/Tegra/sources/kernel/kernel-4.9'... remote: Enumerating objects: 5207472, done. remote: Counting objects: 100% (5207472/5207472), done. remote: Compressing objects: 100% (833434/833434), done. remote: Total 5207472 (delta 4367040), reused 5173766 (delta 4333423) Receiving objects: 100% (5207472/5207472), 943.55 MiB | 1.03 MiB/s, done. Resolving deltas: 100% (4367040/4367040), done. The default kernel/kernel-4.9 source is downloaded in: /home/jetson/librealsense/Tegra/sources/kernel/kernel-4.9 Please enter a tag to sync /home/jetson/librealsense/Tegra/sources/kernel/kernel-4.9 source to (enter nothing to skip):
~~~~~~~~~~ Copying the patched modules to (~/) ~/librealsense Move the modified modules into the modules tree Insert the modified kernel modules Replacing uvcvideo - Applying the patched module ... succeeded Replacing hid_sensor_accel_3d - Applying the patched module ... succeeded Replacing hid_sensor_gyro_3d - Applying the patched module ... succeeded Replacing hid_sensor_trigger - Applying the patched module ... succeeded Replacing hid_sensor_iio_common - Module hid_sensor_iio_common is used by hid_sensor_trigger Unloading dependency hid_sensor_trigger Module is resident, unloading ... succeeded. Applying the patched module ... succeeded Reloading dependent kernel module hid_sensor_trigger ... succeeded. Script has completed. Please consult the installation guide for further instruction.
$ mkdir build && cd build $ export PATH=${PATH}:/usr/local/cuda/bin $ cmake \ -DBUILD_WITH_CUDA=ON \ -DBUILD_WITH_OPENMP=ON \ -DBUILD_PYTHON_BINDINGS=ON \ -DCMAKE_BUILD_TYPE=Release \ .. $ make -j$(($(nproc)-1)) $ sudo make install
$ export PYTHONPATH=$PYTHONPATH:/usr/lib/python3/dist-packages/pyrealsense2/
Jetson Nano (JetPack 4.5)でRealSense v2.41.0ソースビルドできたー
— nb.o (@Nextremer_nb_o) February 14, 2021
カーネルビルドするとき、patchが結構マージされているのでつくりなおした...
CUDA有効でビルドしたけど、realsense-viewerで確認できるのか?3Dにすると、GPUの使用率が上がるからあってるのかな? pic.twitter.com/DRcjwEHwQM